
2015 HOPSCOTCH
HOUR OF CODE

Teacher notes for student-led
tutorial

TIME

BIG IDEA

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

Sequence: The order in which instructions are
given to the computer
Event: When something happens
Rule: Instructions that tell your computer what to
do (the command) and when to do it (the event)
Loop: Code that repeats
Random: a surprise
Range: the highest and lowest number for random
to choose between

2015 HOUR OF CODE LESSON 01

45-60 minutes (+15 minutes of optional, free code
time)

Computers can only do what you SAY because they
are not smart enough to figure out what you MEAN.
Be specific!

– 1 iPad per student, or 1 iPad per 2 students, for
pair programming
– Video tutorial available in Hopscotch and on
YouTube: http://hop.sc/HOC_Video
– Complete project available:
http://hop.sc/HOC_project

1. Students will understand that coding requires
giving a computer explicit directions
2. Students will become familiar with creating and
editing rules
3. Students will practice testing their programs to
find bugs.
4. Students will abstract a problem to design a
solution.
5. Students will develop confidence and persistence.

SKILL FOCUS – Debugging
– Make sense of problems and persevere in solving
(CCSS.MATH.PRACTICE.MP1)
– Look for and make use of structure
(CCSS.MATH.PRACTICE.MP7)
– Designing solutions (NGSS Practice 6)

http://hop.sc/HOC_Video
http://hop.sc/HOC_project

TEACHER BRIEF
Hi!

We’re really excited that, this Hour of Code, you’re programming with your students—both
for them and for you. Kids have remarkable imaginations, and creating computer programs is
an amazing way for them to express themselves. We’ve seen kids create astonishing things
using our simple but powerful tool. We know you’ll see the same when using Hopscotch, and
hope you share what your students create.

Anyone, regardless of their experience in programming, can teach this Hour of Code
lesson. Just as Hopscotch was built on the principle that anyone can become a great
programmer, this lesson is designed on the premise that anyone can teach basic
programming, including you!

In this lesson, students will build a game in which their character jumps over fast-moving
obstacles. It’s simple but fun, and very quickly allows them to experience the satisfaction of
telling their computer what to do.

You can teach this Hour of Code in several ways:

1. Students independently complete their games, following along with the video tutorial in
the app. The tutorial is designed to be used without any outside help (though we encourage
kids to pause it as they’re coding). The tutorial is available at http://hop.sc/HOC_Video.
2. Students indepently complete their games but you ask them to pause their own work for
discussion and group work. We offer discussion ideas, as well as differentiation techniques
and reflection questions, in the following pages.
3. You project the video to the class and use it as a supplement to your instruction. You lead
discussion and group work, and adjust the directions for the project based on the following.

After a discussion of what needs to be built and, if desired, how it might be coded, students
can start coding. Depending on how many iPads you have, you can have students work
independently or in pairs. At Hopscotch, we do a lot of pair programming (two programmers
share one computer) because it helps us write smarter, less-buggy code. We recommend
trying it! All students should get into the habit of testing their code frequently by running
(playing) it. It is much easier to find and solve mistakes when you’re constantly testing.

Have fun and we can’t wait to see what your students build. Share their projects on social
media and tag us either with #madeonhopscotch or @hopscotch on Twitter and
@gethopscotch on Instagram :)

Yours,
Jocelyn Leavitt
Co-founder and CEO, Hopscotch

2015 HOUR OF CODE LESSON 02

http://hop.sc/HOC_Video.

ACTIVITY GUIDE
0. Introductory Discussion (5 minutes)
The first and most important lesson of computer science is that computers do what they are
told, and only what they are told, in the order they are told to do it.

If you fully understand this concept and begin to think of everyday processes (making a
sandwich, getting to school) as a set of instructions, you will begin to think like a programmer
without trying very hard! A programmer is a person who codes, or writes computer
programs. A program is a set of instructions a computer can understand. We refer to these
instructions as a sequence. This term also refers to the idea that computers must follow the
instructions in the order, or in the “sequence” in which they’re given.

Ask your students to name some programs they use. Consider all their games and apps, but
also the software a DJ uses to mix tracks, the database your doctor uses to keep track of your
health, and the video games you play after school. All are programs and all were created by
programmers.

How many times a day do you interact with computers? Are there computers in surprising
places? How about a car? How about a phone? If you can control these computers and write
programs for them, you can make things that millions of people use every day!

1. Using Hopscotch (5 minutes)
Download and get your students acquainted with Hopscotch. (http://hop.sc/gethopscotch)

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the Highlighted + on the bottom of the screen

0. Introductory Discussion (5 minutes)
The first and most important lesson of computer science is that computers do what they are
told, and only what they are told, in the order they are told to do it.

If you fully understand this concept and begin to think of everyday processes (making a
sandwich, getting to school) as a set of instructions, you will begin to think like a programmer
without trying very hard! A programmer is a person who codes, or writes computer
programs. A program is a set of instructions a computer can understand. We refer to these
instructions as a sequence. This term also refers to the idea that computers must follow the
instructions in the order, or in the “sequence” in which they’re given.

Ask your students to name some programs they use. Consider all their games and apps, but
also the software a DJ uses to mix tracks, the database your doctor uses to keep track of your
health, and the video games you play after school. All are programs and all were created by
programmers.

How many times a day do you interact with computers? Are there computers in surprising
places? How about a car? How about a phone? If you can control these computers and write
programs for them, you can make things that millions of people use every day!

1. Using Hopscotch (5 minutes)
Download and get your students acquainted with Hopscotch. (http://hop.sc/gethopscotch)

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the Highlighted + on the bottom of the screen

2015 HOUR OF CODE LESSON 03

http://hop.sc/gethopscotch
http://hop.sc/gethopscotch

ACTIVITY GUIDE

2015 HOUR OF CODE LESSON 04

1.4 Choose Hour of Code Jumper Game

2. Getting started (10 minutes)
In this game, the player controls a little square that jumps over obstacles. It’s a quick and fun
way to experience the power of programming, and leaves lots of room for customization.

One of the most important lessons of this activity is learning that the programmer must not
only put together all the components of the game (characters, background, etc.), but also
explicitly tell the computer how they should work. For this, we need to create a rule, or code
that tells the computer what to do and when to do it. A rule has two components: an event
and commands (or action).

An event is a trigger that the computer recognizes and causes it to do some action. In
Hopscotch, all events start with the word “When” and are the first thing you choose when
you write a rule. Think of it as completing a “WHEN….., THEN…..” sentence.

Events are deeply important for computer engineers because they tell the computer when it
should do something. When you touch the phone icon on your home screen, then your
phone brings up the interface to make calls. When an Angry Bird hits a block, then the block
falls down.

Discuss some events (triggers) that happen in the classroom. Identify the trigger and resulting
action: When I raise my hand (trigger), then stop talking (action), when the bell rings (trigger),
then put down your pencil and turn in your test (action).

You can demonstrate some of these concepts by playing your blank project (wihout any
code). Nothing happens. This is because we’ve yet to build our game! Until we tell the
computer how the game works, we don’t have a game. After a general discussion of rules
and events, you can transition to talking about programming your game.

1.4 Choose Hour of Code Jumper Game

2. Getting started (10 minutes)
In this game, the player controls a little square that jumps over obstacles. It’s a quick and fun
way to experience the power of programming, and leaves lots of room for customization.

One of the most important lessons of this activity is learning that the programmer must not
only put together all the components of the game (characters, background, etc.), but also
explicitly tell the computer how they should work. For this, we need to create a rule, or code
that tells the computer what to do and when to do it. A rule has two components: an event
and commands (or action).

An event is a trigger that the computer recognizes and causes it to do some action. In
Hopscotch, all events start with the word “When” and are the first thing you choose when
you write a rule. Think of it as completing a “WHEN….., THEN…..” sentence.

Events are deeply important for computer engineers because they tell the computer when it
should do something. When you touch the phone icon on your home screen, then your
phone brings up the interface to make calls. When an Angry Bird hits a block, then the block
falls down.

Discuss some events (triggers) that happen in the classroom. Identify the trigger and resulting
action: When I raise my hand (trigger), then stop talking (action), when the bell rings (trigger),
then put down your pencil and turn in your test (action).

You can demonstrate some of these concepts by playing your blank project (wihout any
code). Nothing happens. This is because we’ve yet to build our game! Until we tell the
computer how the game works, we don’t have a game. After a general discussion of rules
and events, you can transition to talking about programming your game.

ACTIVITY GUIDE
We will need to program a hero (a square emoji) to jump up over moving obstacles when
the iPad is tapped.

As a class, break down the components of the first rule: when the iPad is tapped, the square
should jump. Get students to deconstruct the two steps of jumping (move up, then move
down). Does this up and down movement occur along the X or Y axis? As a class, determine
the code that will create this movement.

Then, ask your students to add their hero object (the square emoji) and tell it to jump when
they tap their iPad. You should encourage students to test (play) their code frequently as they
work. By playing it, they can see if it creates the desired effect and correct any mistakes they
may have made. Once they have a working jumper, have them play it for a minute. Cool!

2.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

2.2 Add rule to hero to make it bigger

2.3 Add rule to hero to jump

We will need to program a hero (a square emoji) to jump up over moving obstacles when
the iPad is tapped.

As a class, break down the components of the first rule: when the iPad is tapped, the square
should jump. Get students to deconstruct the two steps of jumping (move up, then move
down). Does this up and down movement occur along the X or Y axis? As a class, determine
the code that will create this movement.

Then, ask your students to add their hero object (the square emoji) and tell it to jump when
they tap their iPad. You should encourage students to test (play) their code frequently as they
work. By playing it, they can see if it creates the desired effect and correct any mistakes they
may have made. Once they have a working jumper, have them play it for a minute. Cool!

2.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

2.2 Add rule to hero to make it bigger

2.3 Add rule to hero to jump

2015 HOUR OF CODE LESSON 05

If you choose a number other
than 200, all of the other
numbers we give will also have
to change. This is an
opportunity for debugging.

Tap the grey “+” button in the
upper right corner of the screen
to get your object. Choose a
text object. When the keyboard
opens, make sure the emoji
keyboard is enabled, which you
can do in your iPad’s settings.

ACTIVITY GUIDE
3. Obstacles [10 minutes]
In games like Flappy Bird and Geometry Dash, it feels like the hero is moving forward
through a stationary world but actually, the hero is stationary and the world is moving
backward. Have you ever been sitting in a stationary car and another car next to you backs
up – doesn’t it feel, for just a moment, like you’re moving forward? In this game, the hero is
the car you’re in, and the obstacles are the things moving backwards.

Take some time to talk about the movement of an obstacle from the right edge of the screen
across to the left edge. See if you can come up with the sequence of obstacle’s movement
rule as a class. Hint: the iPad screen is 1024 pixels wide. So, to go from the right side to the
left, the obstacle needs to move -1024 pixels (from x=1024 to x-0). What should trigger this
rule?

What if we want to make it look like there are many obstacles but only use one object? This is
another great design trick. See if your students can identify the technique to make this
possible – putting the code inside a loop.

This is a good time to discuss sequence and loops.

Sequence is the order in which instructions are given to the computer. The idea of putting
instructions in the correct sequence seems obvious and basic, but it’s a vital concept in
computer programming.

You can reference a real-life example: making sandwiches for their friends. Ask the class what
process they would need to employ in order to make and wrap 10 tuna sandwiches. Does it
matter if the process happens in same order for each sandwich? What if they added mayo
after putting canned tuna on bread? Or what if you put the bread in the bag before opening
the tuna? Silly, but order matters.

Computers have a finite set of kinds of tasks they can accomplish. But when these tasks are
combined properly, amazing things can be built. In addition to running instructions
sequentially, computers are very good at repeating sets of instructions. In computer science
we call this a “loop”, or code that repeats.

Consider using a loop to repeat the sandwich making process: For the number of sandwiches
I need: open the tuna, add mayo, stir, put on bread, put in bag.

As a class, discuss the behavior of the obstacle and together make a list of the steps it takes.
Ask students to consider the difference between using “Repeat 10 times” and “Repeat
Forever”. Which is appropriate for the sandwich? Which is appropriate for the obstacle’s
movement? Also, consider what happens if instructions are out of order.

3. Obstacles [10 minutes]
In games like Flappy Bird and Geometry Dash, it feels like the hero is moving forward
through a stationary world but actually, the hero is stationary and the world is moving
backward. Have you ever been sitting in a stationary car and another car next to you backs
up – doesn’t it feel, for just a moment, like you’re moving forward? In this game, the hero is
the car you’re in, and the obstacles are the things moving backwards.

Take some time to talk about the movement of an obstacle from the right edge of the screen
across to the left edge. See if you can come up with the sequence of obstacle’s movement
rule as a class. Hint: the iPad screen is 1024 pixels wide. So, to go from the right side to the
left, the obstacle needs to move -1024 pixels (from x=1024 to x-0). What should trigger this
rule?

What if we want to make it look like there are many obstacles but only use one object? This is
another great design trick. See if your students can identify the technique to make this
possible – putting the code inside a loop.

This is a good time to discuss sequence and loops.

Sequence is the order in which instructions are given to the computer. The idea of putting
instructions in the correct sequence seems obvious and basic, but it’s a vital concept in
computer programming.

You can reference a real-life example: making sandwiches for their friends. Ask the class what
process they would need to employ in order to make and wrap 10 tuna sandwiches. Does it
matter if the process happens in same order for each sandwich? What if they added mayo
after putting canned tuna on bread? Or what if you put the bread in the bag before opening
the tuna? Silly, but order matters.

Computers have a finite set of kinds of tasks they can accomplish. But when these tasks are
combined properly, amazing things can be built. In addition to running instructions
sequentially, computers are very good at repeating sets of instructions. In computer science
we call this a “loop”, or code that repeats.

Consider using a loop to repeat the sandwich making process: For the number of sandwiches
I need: open the tuna, add mayo, stir, put on bread, put in bag.

As a class, discuss the behavior of the obstacle and together make a list of the steps it takes.
Ask students to consider the difference between using “Repeat 10 times” and “Repeat
Forever”. Which is appropriate for the sandwich? Which is appropriate for the obstacle’s
movement? Also, consider what happens if instructions are out of order.

2015 HOUR OF CODE LESSON 06

3.1 Add emoji object for obstacle (triangle)

3.2 Add rule to obstacle to make it bigger

3.3 Edit obstacle’s rule to move it from a fixed starting place on the right side of
the screen across to the left

3.4 Edit obstacle’s rule to make sequence repeat forever

When moving code into the
repeat block, make sure to not
change the order. Students will
probably make a mistake here
—a good opportunity for
debugging!

ACTIVITY GUIDE

2015 HOUR OF CODE LESSON 07

3.5 Edit obstacle’s rule to make the obstacle wait before moving

3.6 Edit obstacle’s rule to make the obstacle visible only when moving

ACTIVITY GUIDE

2015 HOUR OF CODE LESSON 08

4. Collisions [10 minutes]
When two objects bump into one another, it is called a collision. A collision is a type of
event, so we can decide what actions should happen when that event occurs. In Geometry
Dash, when the hero collides with an obstacle, the game is over.

To designate “game over,” upon a collision the hero will explode and then disappear. In
Hopscotch, when an object is invisible, it can no longer collide with anything, be tapped, or
swiped. Spend some time testing this sequence and getting the timing just right.

4.1 Add new collision rule to hero

5. Add a background (10 minutes)
Drawing the background is a skill that you can apply to any game. Because drawing is just
like any other code, you have to choose an object to be in charge of drawing. It is customary
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Leave a trail” that sets the color and width of the
line, then executes the code inside – typically “Move forward” – as if the object were
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the
following questions and then test out changing their code. What happens… if you don’t put
anything inside the drawing block? …if you forget to set the width? …if you set the color to
white? …if you don’t set the position before you start?

Then, have students attempt drawing their background on their own. They can change the
artist’s speed to draw the background faster.

5.1 Add drawing object (choose anything)

ACTIVITY GUIDE

2015 HOUR OF CODE LESSON 09

If you cannot find the “bumps”
event, tap “more” in the event
menu. You can change the
object into an explosion, make
it spin around, or drop off the
screen like Mario. Turning
invisible is necessary, because it
stops the game from being
playable.

5.2 Add rule to drawing object to paint background

5.3 Edit drawing object’s rules to draw faster

5.4 Publish your game for others to play and remix!

ACTIVITY GUIDE

2015 HOUR OF CODE LESSON 10

The default speed is 400.
9999 is as high as you ever
need to go; that speed is
indistinguishable from
999999999...

Set the invisibility to 100 so you
can’t see the painter.

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

2015 HOUR OF CODE LESSON 11

• Draw a better background
• Make the background colors random
• Add more obstacles (two or three emojis in a row is a possibility, make movement into

an ability)
• Set the obstacle size to random each time; pick a good range!

• What are computers good at? What are they bad at?
• How does this compare to what humans are good and bad at?
• Is drawing with a computer easier or harder than drawing with pencil and paper? Why?

If it is harder, why do we still do it?

GLOSSARY FOR YOUNGER STUDENTS
Ability: Code that can be reused

Algorithm: A recipe for a program

Coding: Telling computers what to do

Concurrence: Two things happening at the same time

Conditional: Statements of the form “IF (something is true) THEN (do an action)”.

Debugging: Finding mistakes in your code and fixing them

Event: When something happens

Iteration: Having ideas and making mistakes, over and over

Logic: The process of making decisions

Loop: Code that repeats

Operator: A mathematical symbol that makes an equation

Program: A set of instructions a computer can understand

Programmer: A person who writes programs

Programming Language: A set of rules or blocks that can be used to write any program

Random: When there’s no pattern

Range: The highest and lowest number random can choose between

Rule: Instructions that tell your computer what to do (the command) and when to do it (the
event)

Sequence: The order in which instructions are given to the computer

Object: A character or text with its own rules

Value/Variable: A holder for a number

2015 HOUR OF CODE LESSON 12

GLOSSARY FOR OLDER STUDENTS
Ability/Function/Procedure/Subroutine: A saved set of blocks. What we call abilities in
Hopscotch are known as functions or subroutines in other programming languages. Easily
replicable routines are a key concept in computer programming, and allow you to scale your
code and create complex programs.

Algorithm: Algorithms are at the heart of computer science; they are the recipes that
computers follow to solve problems.

Bug: An error that a programmer has made in their code

Coding: Writing the rules of behavior for a computer to follow automatically; programming

Concurrency: Two or more things happening at the same time, or triggered by the same event

Conditional: Statements of the form “IF (something is true) THEN (do an action)”

Debugging: Finding mistakes in your code (bugs) and fixing them

Event: A trigger that the computer recognizes and causes it to do some action. In Hopscotch,
events include "When the iPad is tapped" or "When the play button is tapped"

Iteration: the repetition of a process

Logic: the science of the formal processes of thinking and reasoning

Loop: a repeating set of instructions

Operator: a mathematical symbol that produces a value

Program: a set of instructions a computer can understand

Programmer: a person who writes programs

Programming Language: a set of words, rules, blocks or instructions that can be used to write
a program.

Random: Any number or item among a set. The lack of a pattern among items in a set.

Range: The highest and lowest number random can choose between

Rule: Rules tell your object what to do and when to do it. When you make an ability and pair it
with an event, you create a rule.

Sequence: An ordered list of things (instructions, blocks, numbers, etc) which can be triggered
by an event or repeated

Object: A character or text with its own rules on screen

Value: A holder for a number. Also known as a variable

2015 HOUR OF CODE LESSON 13

